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CIS STACKING TECHNOLOGY

Past, Present, Future

Albert Theuwissen

Harvest Imaging (B)

CIS Stacking Technology : Agenda

H Introduction to Stacking and Hybrid Bonding,

m Stacking to :
m Improve CIS performance,
m Extend the electronic volume of the pixel,
m Add new features to CIS,

® Where to make the connection from the top layer to the bottom layer ?
B From W-to-W stacking to D-W stacking,

m Future Outlook,
H Further Reading.
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CIS Stacking Technology : Definition

m Stacking means two or more electronic circuits placed on top each other and connected to each
other,

B Stacking is already applied since a few decades in the memory world, first announcements can
be found in publications of the ‘80s of previous century,

m By definition CIS stacking : a back-side illuminated imager is stacked on top of any other
electronic circuit,

m Electric connections between the various stacked layers can be realized by :

m Micro-bumps, used already for several decades in combination with BSI-CCDs for astronomy
and space applications,

m Through silicon vias (TSV),
m Direct Cu-to-Cu contacts (Hybrid Bonding),
m Combination of aforementioned methods.
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Stacked Image Sensor : Hybrid Bonding (2)
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m Deposition of colour filters and micro-lenses on the CIS backside.
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Example : Galaxy S7 Sensor

shifted micro lenses
boxed colour filters - S —

deep trenches

metal layers

hybrid bondings

Processing IC Image sensor

http://www.chipworks.com/about-chipworks/overview/blog/samsung-galaxy-s7-edge-teardown © copyright 2023 Albert Theuwissen

Advantages of Hybrid Bonding

H Very compact structure :
= Small(est) footprint (possible),
m Low interconnect resistances and capacitances, fast and low-power interconnects,

m “Cheap” image sensor chip (n-MOS instead of CMOS),

m Optimized choice of fabrication technology for top and bottom layer,

m Not limited to visible RGB sensing, but also depth, temporal contrast, near-IR, ...
H Not limited to W-to-W stacking, but also D-W stacking,

m Allows further improvement of CIS performance (noise, full-well, dynamic range, speed, ...),

m Extends the “electronic volume” of the pixels (sub-micron pixels, wide dynamic range, global
shutter, ...),

u Allows pixel-level processing,
m Adds new features to the existing CIS devices.
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Extension Pixel “Electronic Volume” (2)

n My Digital
?’ ADC [+ Memory Readout
- DPS Pixel

Fig.5. DPS pixel layout (2 x 2 pixel block shown). Pixel size is 9.4 x 9.4 pm.

S. Kleinfelder, IEEE JSSC, 2001.
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ltem Data
Process Top: 30nm 1Poly-4Metal
Bottom: 55nm 1Poly-7Metal
Supply voltage 29Vn.av
Pixel size 4.8um(H) x 4.8um(V)
# of pixels 2360 (H) x 1728 (V)
Sensitivity 28400e- Ixis
o | Route e
DNL/NL +0.3L8B8 / <3.3LSB
Conversion gain 65ulfe-

Total random noise

4.2e~rms (Dark, A-gain 24dB)

Block random noise

0.40e~rms (Dark, A-gain 24dB)

Phase random noise

0.28e—rms (Dark, A-gain 24dB)

T. Takahashi, VLS| Symposium, 20
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Extension Pixel “Electronic Volume” (3)

Photodiode

Technology 0.35um, 3.3V CMOS (2P-4M)
Pixel pitch A5umx15um

Array size 140x140 pixel

Transistors per pixel |20

Die size 3.9x4.6mm’

Power dissipation

200mW@30fps (including ADC)
30mW@30fps (analog part only)

Fill factor 20%

Sensor output Two 10-b digital outputs
ADC DNL/ INL (+0.5, -0.4) / (+0.6, -0.5)
FPN {Out1,0ut2) <0.5%, <1.7%

PN (Out1,0ut2) 0.13% rms

Dynamic range

120 dB (typical operation)

Dark current

90mVisec @ T=30C

D. Stoppa, IEEE JSSC, 2007.
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PN : ;q
| RAMP 1
__________________ '
Yy, \_ ADC layer
Specification This work
Pixel architecture DPS (pixel parallel)
- 2Q
Quantization scheme (PD-Time Stamp)
Pixel size [um] 4.0
In pixel Memory bit #
(state bit #) 9b(1)
QE (@530nm) max [%] 90 (Mono)
Dynamic range [dB] 107
Conversion Gain [uV/e] 150
Linear full well [ke’] 4/2000%*
Noise floor [e7] 8.2
Dark FPN [e] 63.9

K. Mori, VLSI Symposium, 2021.
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i-ToF and d-ToF

vDD  MG: Modulation Gate VDD
SN: Storage Node

SG: Storage Gate  RST]
TG: Transfer Gate

MG1 SG
L

- DRN

PPD,

Backside Deep
Trench Isolation

Photodiode-
N-type epi

Sensor Chip

Metal
Reflector

Logic Chip

M. Tsutsui, IISW, 2021.

0.8 um CMOS

0.35 ym CMOS
130 nm CMOS

65 nm CMOS
}- . B

FF=25% FF=35%

FF=9%

M.-J. Lee, IEEE QE, 2018.

m SPADs have a low fill-
factor,

m Stacking can solve this
problem !

SPAD Pixel Array
960 x 960

Pixel Circuit Array
960 x 960

Y. Ota, ISSCC, 2022.
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Adding New Features

Conventional
Stacked CMOS
Image Sensor (BI-CIS)

Newly developed
Stacked BI-CIS

A micrograph of top layer

m High-speed CIS are very often limited by the speed of the 1/0,

m With a 3-layer stacked DRAM included, the I/O from CIS to DRAM can be very fast (in combination

to a lower speed to the external periphery),

H Applications :
= Slow motion for video,

m Ultra-fast rolling shutter for digital photography (mechanical shutter no longer needed).

T. Haruta, ISSCC, 2017.

A micrograph of middle layer

Column ADCs x 2

Column ADCs x 2

A micrograph of bottom layer
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Towards Pixel Splitting (1)

select on the logic layer, make a triple stacked device :
m Top layer contains the photodiodes,
= Middle layer contains the pixel transistors,
= Bottom layer contains all logic circuits.

technology,
Unit Pixel
Unit Pixel = W
- Circuits Circuits
Conventional Structure 2-Layer Pixel

K. Nakazawa, IEDM, 2021.
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m Instead of having a connection in the charge domain and place the source-follower, reset and

m Advantages : high full well, large fill factor, “large”-sized source follower (1/f and RTS noise),
m Disadvantage : potentially a low conversion gain, but this is solved by a more complex stacking

Towards Pixel Splitting (2)

Unit Pixel

SISRIR  SSSSERIRISSSSESEERIBSRSESESES  [BEBSESEY
yPhotodiode ; o oW m oW m om
L7
! = / ISEL AmP RSTI Transistor
.+ Transistor &= [ ]

- - TG TG
Circuits e | m=m
FD
Photodiode
PD PD
. . 200kV x40.0k TE 21/06/23 18:09
Unit Pixel

m 33 Mpixels, 0.7 pm pixel pitch,

m Double stacking (no stacking to circuits),
m Full Well Capacity : 2x,

® Low Random Noise (1/f noise, RTS).

K. Nakazawa, IEDM, 2021.
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Triple Stacking (1)

The imaging technology came to the point

that the in-pixel transistors hamper further

downsizing. Solution is to use multiple

stacking layers :

* The first layer contains the photo-
conversion part :

Optimized fill factor,

Optimized full well,

The second layer contains the in-pixel

transistors :

Optimized noise (1/f and thermal

noise),

(Sony presented this solution at IEDM 2021
in a two-layer technology).

ST Microelectronics, IEDM 2022
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Triple Stacking (2)
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ST Microelectronics, IEDM 2022
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Triple Stacking (3)

3-Tier BSI CIS stacking

Tpixell
Photogate

ST Microelectronics, IEDM 2022

3D contact

3D contact
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Pixel S'rrucvtnure : @ and ht Collectio
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To make use of electrons and holes, the
quantum efficiency for both NEEDS TO BE
EQUAL !I! This is only possible if the
collection volume is fully isolated.

SENSORS 2018
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Performance (1)

Photo-Response Non-Uniformity (PRNU)
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.
Single Exposure Performance Landscape
Pixel Summary
125 ,— So ny
High Conversion gain holes 106 uV/h+ 120
Conversion gain electrons 0625 pV/e- 18 _\ : :
Usable Full Well holes 2,500 b+ K—h\ o ST Microelectronics
Usable Full Well electrons 400,000 e- s ™ \ .
1.4 Mm High Frequency PRNU holes 0.80 % Ems This work ON Semiconductors
High Frequency PRNU electrons 0.80% § o
Ldark holes 4nsss g9 - Sony
a
Idark electrons 20,000 e-/s 20 \
Temporal Noise in High CG Mode 20+ 85 Brillnics
Dynamic range (FPN not included) 106 dB 80
1 15 2 3 35
Performance Unit Value Sl
High Conversion gain electrons uV/e— 163
Low Conversion gain electrons uV/e— 29.6
Conversion gain holes uV/h+ 1.33
Usable Full Well electrons e— 33,000
Usable Full Well holes h+ 750,000
High Frequency PRNU electrons 0.55%
High Frequency PRNU holes 0.41%
3.4 Idark electrons e—/s 45
-4 Hm Idark holes ht/s 2300
Noise Floor in High CG Mode e— 12
Dynamic range dB 116
Green QE peak 73%

PRNU: pixel response non-uniformity; QE: quantum efficiency.

ST Microelectronics, IEDM 2022
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Die-to-Wafer Stacking (1)

ikt
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Conventional Method
stenial W S IV C)
-y Eplmma]\v\.aﬁ:r" g .. _.Bump Ap
PDA Process ROIC (5i)
Flip-chip Hybridization
TI-V Dies-to-Wafer =
11I-V Chip,

it Support Wafer (8i)
Support Wafer (51) CeCu

PDA Process

ROIC (Si) Support Waler Removal

Cu-Cu Hybridization

New Process Architecture of This Work

S. Manda, IEDM 2019.

icon Wafer

Oil  Water  Salt  Sugar

Visible imaging

SWIR imaging

m 1.3 Mpixels, 5.0 ym pixel pitch,
m 1550 nm SWIR,
m 40 °C.
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Die-to-Wafer Stacking (2)

SWIR
(InP/inGaAs/InP)

1
FTRITRITRR TS

Read Out IC (ROIC)

RRRTITNTRTITIRT]

B TTTTRTRT TV TINT TTRTMRTTITIR TR TS

B The stacked die no longer has to match the form factor of the

“carrier”,

H More than one die can be stacked to a single “carrier” (u-bumps), /
H The stacked die can be the imager or can be the digital circuit. [

Techlnsights, Reverse Eng. Report IMX990, 2021 Y. Oike, VLSI Symp., 2016

dark pixel region

New detector layer

Pixel level
interconnect
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Pixel wafer.
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Future Outlook (1)

m More triple-layered structures are on their way in which two layers will be used for the pixels :
m Further increase the dynamic range of small-pixel devices,
m Create global shutter functionality in the voltage domain (see announcement this week by OV),

m iToF pixels will become as small as today’s global shutter pixels, performance improvement of
dToF based on SPADs, e.g. PDE, speed and power (towards 1Tops/W),

® Tomorrow’s SPAD technology will be based on today’s mobile imaging technology,

m SWIR applications require the combination of “foreign” materials and a silicon ROIC, stacking is
ideally suited for this technology, D-2-W stacking opens new horizons,

m Stacking makes pixel-level processing possible and will pave the path to intra-pixel processing,

m Stacking will allow that the image sensor will become the first layer of a neural network,
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Future Outiook (2)

m New CIS developments will focus on advanced packaging of which stacking will be part of,

m Dedicated equipment is becoming more widely available, also to the pixel-level imaging world :
W-2-W and D-2-W machines,

® What about the heat dissipated “underneath” the pixels ? What about yield (x-y) ? Should the
stacked layers have the same physical size ?

m Can the (consumer, mobile) imaging market make enough money to support the continuous
need for more advanced technologies ?

m Stacking is enlarging the technology gap between the most advanced imaging fabs and the
ones that use a “standard” technology,

® What about low-volume applications ? What about access to stacking for research activities ?
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(A MUST 1) Further Reading

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 69, NO. 6, JUNE 2022 @
S

A Review of 3-Dimensional Wafer Level Stacked
Backside llluminated CMOS Image Sensor
Process Technologies

Shou-Gwo Wuu, Member, IEEE, Hsin-Li Chen™, Member, IEEE, Ho-Ching Chien,
Paul Enquist™, Senior Member, IEEE, R. Michael Guidash™, Member, IEEE, and John McCarten

(Invited Paper)
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